Data field	**Explanation**
Module number | M03
German title / English title | Stochastische Modellierung und Optimierung / Stochastic Modeling and Optimization
Credits | 5 ECTS
Workload | 68 Contact hours (4 SWS SU), 82 Hours of independent study
Subject coverage | Subject-Specific specialization

Learning outcomes | Students master the fundamentals of the theory of probability and stochastic processes. They know how stochastic models are applied to practical communications engineering problems in signal processing, signal transmission, network engineering, or parameter estimation and detection, and they can design and analyze optimum systems on the basis of such models.

Requirements | None
Level | 1. Semester
Type of module | Seminar
Status | Required module
Semesters when offered | Winter semester

Method of assessment / Type of examination | The method of assessment / type of examination must be defined by the lecturer within the deadline determined in §19 (2) RSPO. Should the deadline pass without determination of the form of assessment in the module, the following method of assessment / type of examination applies: Written examination (120 minutes)

Grade assessment | See study and examination regulations

Content | • Probability, random variables, univariate and multivariate distribution and density function, expected value, moments, correlation
• Stochastic processes: ensemble and time average, characteristics of stochastic processes, correlation, power density spectrum
• Examples of stochastic processes: Gaussian process and variants, Poisson and Erlang process, Markov chains, ARMA process
• Transformation of stochastic processes: non-linear static systems, linear systems with memory
• Design and analysis of optimum systems: estimation and detection problem, estimation characteristics, optimization criteria
• Applications in communications engineering: e.g. statistic linearization, histogram equalization, Bayes estimation and detection, Maximum-likelihood estimation, linear prediction, Wiener filter, Kalman filter, queuing theory, communication source and channel models, entropy, channel capacity, coding

Further information | Language employed in the module: English

Required Room type | SU-Sem